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a b s t r a c t

Fuel cells offer a significant and promising clean technology for portable, automotive and stationary
applications and, thus, optimization of their performance is of particular interest. In this study, a novel
optimization tool is developed that realistically describes and optimizes the performance of fuel cell sys-
tems. First, a 3D steady-state detailed model is produced based on computational fluid dynamics (CFD)
techniques. Simulated results obtained from the CFD model are used in a second step, to generate a
database that contains the fuel and oxidant volumetric rates and utilizations and the corresponding cell
voltages. In the third step mathematical relationships are developed between the input and output vari-
ables, using the database that has been generated in the previous step. In particular, the linear regression
methodology and the radial basis function (RBF) neural network architecture are utilized for produc-
ing the input–output “meta-models”. Several statistical tests are used to validate the proposed models.
Finally, a multi-objective hierarchical Non-Linear Programming (NLP) problem is formulated that takes
into account the constraints and limitations of the system. The multi-objective hierarchical approach is

built upon two steps: first, the fuel volumetric rate is minimized, recognizing the fact that our first concern
is to reduce consumption of the expensive fuel. In the second step, optimization is performed with respect
to the oxidant volumetric rate. The proposed method is illustrated through its application for phosphoric
acid fuel cell (PAFC) systems.
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. Introduction

A fuel cell is a device where chemical energy from a fuel, such as
ydrogen, is electrochemically converted to electrical and thermal
nergy, without the need for combustion and without producing

oise or pollution. Performance optimization is a primary target of
he fuel cell technology that can substantially increase its compet-
tiveness and benefits in industrial, automotive and environmental
pplications.

Abbreviations: 3D, three-dimensional; CFD, computational fluid dynamics; CPU,
entral processor unit; FC, fuel cell; LHV, lower heating value; LOO, leave one out;
LP, Non-Linear Programming; NNM, neural network model; OCV, open circuit volt-
ge; PAFC, phosphoric acid fuel cell; PEMFC, proton exchange membrane fuel cell;
RESS, prediction error sum of squares; RAM, random access memory; RBF, radial
asis function; RMSE, root mean-squared error; SOFC, solid oxide fuel cell; SSE,
um of squared errors between the observations and the predicted values; SSY,
um of squared deviations between the observations and their mean; STP, standard
emperature and pressure conditions.
∗ Corresponding author at: National Technical University of Athens, School of
hemical Engineering, Zografou University Campus, 15780 Athens, Greece.
el.: +30 210 7723237; fax: +30 210 7723138.

E-mail address: hsarimv@chemeng.ntua.gr (H. Sarimveis).
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Fuel cells offer a significant and promising clean technology,
ut they are governed by complex multi-physics phenomena, that
an be modeled only by advanced modeling tools. Among several
lternative techniques, computational fluid dynamics (CFD) models
ave been used extensively for simulating the static and/or dynamic
peration of fuel cells [1–4]. However, most modeling techniques
uffer from long simulation running times. Mathematical meta-
odels based on CFD results [5] can noticeably increase simulation

peed. Neural network models (NNM) have been used with suc-
ess to develop such meta-modeling relationships between input
nd output variables [6]. Recent research has shown that neural
etwork approaches can produce simulation results of high accu-
acy and reliability, whereas at the same time the computational
imes are reduced significantly [7,8]. Moreover, NNM applications
re considered as a practical and alternative methodology to ana-
ytical and empirical models of fuel cells [9].

In this paper, we present a novel method for examining and

ptimizing the performance of fuel cell systems based on a meta-
odeling approach. Initially, a detailed 3D steady-state, isothermal

FD simulation model [10] of the fuel cell system is used to gener-
te a database that contains the values of the key system variables:
he fuel and oxidant volumetric rates and utilizations and the

http://www.sciencedirect.com/science/journal/03787753
mailto:hsarimv@chemeng.ntua.gr
dx.doi.org/10.1016/j.jpowsour.2008.06.081
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Nomenclature

A Tafel constant (V)
Aeff electrode effective area (m2)
Ci concentration of component i, where i are compo-

nents of a gas mixture (kgi kgmix
−1)

Di,mix mixture molar diffusivity (m2 s−1)
Dij binary diffusivities for each pair of chemical species

in gas mixture (m2 s−1)
E reversible open circuit voltage given by Nernst equa-

tion (V)
I current density (A m−2)
I* optimal value of current density (A m−2)
I0 exchange current density (A m−2)
k number of independent variables
L number of hidden nodes in the neural network

topology
m constant in the empirical equation for mass concen-

tration losses (V)
mH2,input mass of fuel input in cell (kg s−1)
mH2,react mass of fuel reacted in cell (kg s−1)
mO2,input mass of oxidant reacted in cell (kg s−1)
mO2,react mass of oxidant input in cell (kg s−1)
n number of the available data
nc constant in the empirical equation for mass concen-

tration losses (m2 A−1)
neff fuel cell efficiency (%)
n∗

eff optimal value of fuel cell efficiency (%)
PC fuel cell output power (W)
PD power demand (W)
PD power density (W m−2)
PD* optimal value of power density (W m−2)
Qf inlet fuel gas volumetric rate (l h−1)
Q 1

f value of the inlet fuel gas volumetric rate after the
first stage of the optimization problem (l h−1)

Q ∗
f optimal value of the inlet fuel gas volumetric rate

(l h−1)
Qox inlet oxidant gas volumetric rate (l h−1)
Q ∗

ox optimal value of the inlet oxidant gas volumetric
rate (l h−1)

r area specific resistance (� m−2)
R2 coefficient of determination (%)
R2

CV coefficient of determination by using the cross-
validation technique (%)

S� source term of � variable
�u velocity vector
Uf hydrogen utilization (%)
U∗

f optimal value of hydrogen utilization (%)
Uox oxygen utilization (%)
U∗

ox optimal value of oxygen utilization (%)
VC cell voltage (V)
V̄C mean of all CFD cell voltage values in the available

dataset
V∗

C optimal value of cell voltage (V)
VC,i CFD cell voltage value for observation i (V)
V̂C,i model prediction of cell voltage for observation i (V)
V̂LOO

C,i
cell voltage prediction for observation i of the model
that is trained using all the available data, except for
observation i

�Vact activation losses (V)
�Vconc concentration losses (V)
�Vlosses cell voltage losses (V)

�Vohm ohmic losses (V)
wj the weight corresponding to the response of the jth

node in the neural network topology
xj the centre of the jth node in the neural network

topology
x input vector in the neural network model
Xj Molar fraction of mixture component j
zj The response of the jth node in the neural network

topology

Greek symbols
˛ charge transfer coefficient (typical value 0.5)
ˇf coefficient in the definition of hydrogen utilization
ˇox coefficient in the definition of oxygen utilization
� � exchange coefficient
�Ci

exchange coefficient representing the diffusivity for
each mixture component (kg m−1 s−1)

� tuning parameter in the formulation of the multi-
objective optimization problem

�mix viscosity of the mixture (Pa s)
� density of the mixture (kg m−3)
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� dependent variable, i.e. U, V, W, Ci, and 1 for conti-
nuity

orresponding cell voltages. These values are obtained after several
uns of the CFD model. Linear regression is then applied to develop
linear correlation model between the input and the output vari-

bles, while an advanced NNM methodology is applied to obtain
non-linear model. The database is also used for validating the

ccuracy of both linear and non-linear models. Eventually, a hier-
rchical multi-objective optimization problem is formulated, that
an be used with both linear and non-linear approaches, in order to
btain the optimal values of the decision variables, i.e. the fuel and
xidant volumetric flows. The proposed computational tool is illus-
rated through its application for phosphoric acid fuel cell (PAFC)
ystems and is summarized graphically in Fig. 1.

. PAFC simulation

.1. CFD modeling

.1.1. The physical problem
PAFCs belong to the medium operation temperature fuel cells

∼220 ◦C). The type of the electrolyte that is used in a PAFC permits
nd facilitates the conduction of mobile H+ ions. Air or pure oxygen
s used as the oxidant gas, while pure hydrogen or a gas mixture that
ontains hydrogen and carbon dioxide (produced by hydrocarbon
eforming) is used as fuel gas.

Reactions taking place in a PAFC are the following:

node: 2H2 → 4H+ + 4e− (1)

athode: O2 + 4H+ + 4e− → 2H2O (2)

otal reaction : H2 + 1
2 O2 → H2O (3)

In the PAFC system considered in this work, the content of the
node electrode is 10 wt% Pt/C of catalyst powder, while for the

athode the catalyst powder used contains 25 wt% Pt/C. The fuel
as and the oxidant gas enter the PAFC in cross-flow. The fuel gas
ows in the longer electrode and the oxidant gas in the shorter
ne, when an orthogonal cell is considered. The examined fuel cell
eometry is given in Table 1.
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Fig. 1. Flowchart of the proposed PAFC modeling and optimization procedure.

The thickness of the electrolyte including the electrodes is 3 mm,
he thickness of half bipolar plate is 0.5 mm and the thickness of
as flow channels is 3 mm. The half bipolar plate is considered for
single cell simulation. The fuel cell geometry is chosen from an

xperimental fuel cell performance study, in order to compare the
umerical results with the experimental data [11].

A non-uniform grid was used to minimize the computational
equirements while allowing proper resolution in high-gradient
egions (near wall regions; electrodes). Detailed numerical tests
ere performed to ensure that the solutions were independent of

he grid size. A 51 × 33 × 45 mesh was found to provide sufficient
patial resolution and give a grid-independent solution.

The average time required for a run, with the above mesh, is
bout 4.5 h on a Silicon Graphics Server Origin 200, 2 CPU R 10,000,
84 MB.

.1.2. The mathematical model
Since the purpose of this work is the development of a use-

ul computational tool, simple physics have been introduced for
emonstration purposes. It should be emphasized, however, that
hysics of any complexity might be easily introduced into the

eveloped computational framework. Due to the PAFC geometry
Cartesian coordinate system is used. As it has already been men-

ioned above, grid independency study results have indicated a
omputational grid that consists of 51 × 33 × 45 (NX × NY × NZ)

able 1
he examined fuel cell geometry

AFC geometry
Dimension X, fuel gas flow direction 30 cm
Dimension Y, fuel cell thickness 1 cm
Dimension Z, oxidant gas flow direction 20 cm
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e
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ells. Mathematical analysis is based on the set of elliptic partial
ifferential equations of mass and momentum conservation and
hemical species composition, when a steady-state 3D flow is con-
idered. The governing equations of every dependent variable � can
e expressed in the following generic form [12]:

∂

∂t
(��) + div(��u�) = div(��grad�) + S� (4)

here � is the mixture’s density, �u is the velocity vector, � � is the
xchange coefficient and S� is the source term representing the
roduction or consumption rate of each component. The SIMPLEST
lgorithm of the commercial CFD code PHOENICS® is used to solve
he partial differential equations set [13].

The following assumptions are made in the model: (a) steady-
tate; (b) ideal-gas mixtures; (c) incompressible and laminar flow
ue to law gas velocities (Reynolds number based on the hydraulic
iameter is of order 10); (d) isothermal operation (valid only for
he cell and not for the stack); (e) electrochemical procedures are
onsidered to be described adequately by Faraday’s first law; (f) oxi-
ant and fuel never get in contact as they flow in different channels
nd they are separated by the two solid electrodes.

Gas mixture density is calculated by the ideal-gas law and mix-
ure viscosity is calculated by Wilke’s formula [14]. The diffusion
oefficients Di,mix for multi-component flow are calculated from
he following equation:

i,mix =

⎛
⎜⎜⎝

5∑
j = 1
j /= i

Xj

Dij

⎞
⎟⎟⎠

−1

(5)

here Xj represents the mole fractions of the different components
n the gas mixture, and Dij are the binary diffusivities for each pair
f chemical species in the mixture. It should be mentioned here
hat since the flow is laminar, �Ci

is equal to �Di,mix [15].

.1.3. Boundary and special internal conditions
Boundary conditions must be specified at the inlets, outlets and

alls, and special internal conditions must be set at the surfaces
f the electrodes. Inlet mass fractions for the chemical species are
kgi/kgmix):

Anode: H2 0.25, O2 0.0, H2O 0.0, N2 0.0, CO2 0.75
Cathode: H2 0.0, O2 0.23, H2O 0.0, N2 0.77, CO2 0.0

At the outlets, the computed pressure is relative to the external
ressure, which is considered known.

On all the walls the no-slip boundary condition is applied for
he momentum equations, and the shear stress is calculated by the
se of “wall-functions” [13].

The surface production and consumption rates of the products
n both electrodes are involved in the special conditions for the
lectrochemical reactions [10].

.1.4. Characteristics of a PAFC operation
In an operating fuel cell if all irreversible losses are taken into

ccount, the actual cell voltage is
C = E − �Vlosses (6)

here E is the open circuit voltage (OCV) obtained by the Nernst
quation and �Vlosses are the total voltage losses. Voltage irre-
ersible losses can be expressed as a function of current density
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Table 2
The database used for the generation and validation of the linear regression model
and the NNM

No. of data VC (V) Uf (%) Qf (l h−1) Uox (%) Qox (l h−1)

1 0.748878 21 40 14.1 125
2 0.65328 47 60 46 130
3 0.614492 62 80 26 400
– – – – – –
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[16]. Based on all the above considerations, the following rela-
ionship is formed:

C = E − �Vact − �Vohmic − �Vconc (7)

here �Vact, �Vohm, and �Vconc stand for the activation, ohmic,
nd concentration losses, respectively. When voltage loss terms
re replaced by the respective analytical expressions, the above
quation can be written as

C = E − A ln
(

I

I0

)
− Ir − m exp(ncI) (8)

here A is the “Tafel constant”, I is the current density, I0 is the
xchange current density, r is the area specific resistance, and m, nc

re constants.
This equation is widely used by the majority of fuel cell

esearchers for the estimation of final fuel cell voltage given a con-
tant current, while the mass concentration losses are calculated
y an empirical equation [17].

“Hydrogen utilization”, Uf, is defined as the ratio of the hydrogen
ass that reacts to the incoming hydrogen mass flow:

f = mH2,react

mH2,input
(9)

Faraday’s first law indicates that the hydrogen mass flow that
eacts is proportional to current density I, while the hydrogen mass
ow that enters the system is proportional to the fuel inlet vol-
metric rate. Therefore, the following hydrogen utilization Uf can
lternatively be expressed using the following equation:

f = ˇf
I

Qf
(10)

here Qf is the inlet fuel volumetric flow and ˇf is a constant that
epends on the type and geometry of each particular fuel cell as
ell as on the composition of fuel gas.

A similar equation to Eq. (9) defines “Oxygen utilization” Uox:

ox = mO2,react

mO2,input
(11)

Similarly to Eq. (10), oxygen utilization can alternatively be
efined as follows:

ox = ˇox
I

Qox
(12)

here Qox is the inlet oxidant volumetric flow and ˇox is a constant
hat depends on the type and geometry of each particular fuel cell
s well as on the composition of oxidant gas.

Fuel cell efficiency can be expressed by the following equation:

eff (%) = Uf
VC

1.25
× 100 (13)

here VC is the operating fuel-cell voltage and 1.25 V is the maxi-
um cell voltage based on the lower heating value (LHV).

.2. Formulation of database

Eqs. (10) and (12) indicate that only three of the variables Qf,
ox, Uf, Uox, and I are independent variables. In order to obtain
database for training the linear and neural network models,
e selected the fuel inlet volumetric rate Qf, the oxidant inlet

olumetric rate Qox and fuel utilization Uf as the independent

nput-variables and performed several runs of the CFD model. In
articular, we assigned values in the range (5–80%) to fuel uti-

ization, whereas fuel inlet volumetric rate and oxidant volumetric
ates took values in the ranges (40–120 l h−1) and (85–800 l h−1),
espectively (both volumetric rates were measured in STP).

i
v

w
a

– – – – – –
– 0.577843 57 120 29 500
– – – – – –

80 – – – – –

The database that is used for both linear regression and neural
etwork modeling consists of 480 input–output pairs and has the

orm shown in Table 2.

. Development of the meta-models

This section presents the procedure that was followed in order
o develop correlation equations between the cell voltage VC and
he three independent input variables Qf, Qox, and Uf. In particular,
or the linear regression method, the natural logarithms of the three
ndependent variables are used as input parameters to the model.

.1. Linear regression

The database that is generated by the CFD simulation results was
nitially used to develop an equation that correlates the cell voltage
C with the three independent input variables Qf, Qox, and Uf. It
as found that the accuracy of the produced model is higher if the
atural logarithms of the variables are utilized. Therefore, although

inear regression is used, the following non-linear model between
he input and the output variables was finally produced:

C = −0.094894 × ln(Qf) + 0.017765 × ln(Qox)

−0.085789 × ln(Uf) + 1.2773 (14)

The above model is associated with the following statistics:

oot mean-squared error(RMSE)

=
√

SSE
n − k − 1

=

√∑n
i=1(VC,i − V̂C,i)

2

n − k − 1
= 0.0616 (15)

oefficient of determination(R2)

= 1 − SSE
SSY

= 1 −
∑n

i=1(VC,i − V̂C,i)
2∑n

i=1(VC,i − V̄C)
2

= 0.9770 (16)

-statistic = (R2/k)
(1 − R2)/(n − k − 1)

= 6742.7 (17)

here SSE stands for the sum of squared errors between the obser-
ations and the predicted values over the set of the available data,
hile SSY stands for the sum of squared deviations between the

bservations and their mean. In the above equations VC,i is the
FD cell voltage value for the ith observation, V̂C,i is the associated
odel prediction, and VC is the mean of all CFD cell voltage values
n the available data set. Finally, k is the number of the independent
ariables, and n the number of the available input–output data.

In order to explore the reliability of the modeling methodology
e also used the cross-validation method. Based on this technique,
number of modified data sets are created by deleting in each case
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Table 3
Minimum, maximum, mean and standard deviation values of the RMSE and R2

statistics obtained after performing 100 runs
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Minimum Maximum Mean S.D.

MSE 0.1028 0.1469 0.1237 0.0089
2 0.9712 0.9829 0.9775 0.0023

ne or a small group (i.e. leave some out) of objects. For each data
et, an input-output model is developed, based on the utilized mod-
ling technique. Each model is evaluated, by measuring its accuracy
n predicting the responses of the remaining data (the ones that
ave not been utilized in the development of the model). In partic-
lar, the leave one-out (LOO) procedure was utilized in this study,
hich produces a number of models, by deleting each time one

bject from the training set. Obviously, the number of models pro-
uced by the LOO procedure is equal to the number of available
xamples n. Prediction error sum of squares (PRESS) is a standard
ndex to measure the accuracy of a modeling method using the
ross-validation technique. Based on the PRESS and SSY statistics,
he R2

CV and SPRESS values can be easily calculated. The formulae
sed to calculate all the aforementioned statistics are presented
elow:

2
CV = 1 − PRESS

SSY
= 1 −

∑n
i=1(VC,i − V̂LOO

C,i
)
2

∑n
i=1(VC,i − V̄C)

2
(18)

PRESS =
√

PRESS
n − k − 1

(19)

here V̂LOO
C,i

is the cell voltage prediction for observation i of the
odel that is trained using all the available data, except from obser-

ation i. The obtained results are

R2
CV = 0.9765

SPRESS = 0.0117

Further validation of the linear regression methodology was
erformed by developing models based on 75% of the available
ata and evaluating them on the validation set, i.e. the rest of the
atabase that was not used for the derivation of the model. In order

o show that the success of one particular model is not due to a
hance correlation, 100 random partitions of the data into training
nd validation sets (75% and 25% of the data, respectively) were
sed to derive 100 different correlation equations. The RMSE and

ig. 2. CFD cell voltage values and linear model predictions for the validation
ataset.

a
a
i
F
a

F
p

ig. 3. CFD cell voltage values vs. linear model predictions for the validation dataset.

2 statistics were calculated for each model using only the valida-
ion examples. Table 3 shows the minimum, maximum, mean and
tandard deviation values of the RMSE and R2 statistics obtained
fter performing the 100 runs.

Figs. 2 and 3 present the predicted values for Vc obtained from
linear model corresponding to RMSE = 0.1127 and R2 = 0.9813 in

omparison to the CFD simulation results. Fig. 4 compares the CFD
imulation results with the linear model predictions using the LOO
ross-validation procedure. It is quite obvious that the model devel-
ped using the linear regression technique is quite successful and
ccurate except for the cases where the values of the output variable
re close to their upper or lower limits.

.2. Neural network model (NNM)

In this section, we examine how the results presented in the
revious subsection can be improved in terms of the accuracy of
he produced model, by utilizing a non-linear statistical modeling
pproach. In particular, the radial basis function (RBF) neural net-
ork architecture is utilized for modeling the system. This specific
rchitecture was chosen because of its simple topology and the fast
nd robust algorithms that are available in the literature for train-
ng such networks. The topology of the RBF network is presented in
ig. 5 and consists of three layers: the input layer, the hidden layer
nd the output layer.

ig. 4. CFD cell voltage values vs. linear model predictions using the cross-validation
rocedure.



350 P.L. Zervas et al. / Journal of Power Sources 185 (2008) 345–355

d
i
d
v

t
o

V

Table 4
Statistical indices corresponding to the linear model and RBF network models

Linear
model

RBF (6 fuzzy
sets)

RBF (7 fuzzy
sets)

RBF (8 fuzzy
sets)

RBF (9 fuzzy
sets)

RMSE 0.0617 0.0740 0.0342 0.0165 0.0075
R
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Fig. 5. Standard topology of an RBF neural network.

In this study, the RBF network is structured so that it can pre-
ict the cell voltage VC, which is the output variable, using three

ndependent input parameters: the fuel volumetric rate Qf, the oxi-
ant volumetric rate Qox, and the fuel utilization Uf. Thus, the input
ector x is defined as x = [Qf Qox Uf]

T.
The neural network output provides the estimated value V̂C for

he cell voltage and is calculated as a weighted sum of the responses

f the hidden layers:

ˆC =
L∑

j=1

wjzj(x) (20)

c
s
i
i
t

Fig. 6. CFD cell voltage values vs. neural network model
2 0.9770 0.9861 0.9947 0.9969 0.9995
2
CV 0.9765 0.9829 0.9863 0.9946 0.9991
PRESS 0.0117 0.0101 0.0090 0.0056 0.0022

here

j(x) = f
(
||x − xj||22

)
(21)

In the above equations zj is the response of the jth node, f is the
adial basis function, xj is the center of the jth node, L is the total
umber of hidden nodes and wj is the weight corresponding to the
esponse of the jth node.

An RBF training procedure aims at the determination of the
umber of nodes in the hidden layer, the hidden node centers and
he output weights, in order to minimize the deviation between
he predicted and the measured values of the output variables over
he set of the available database. The performance of the produced
etwork is validated on the set of input–output data that have not
een utilized during the training procedure.

The training method used in this work is based on the fuzzy par-
ition of the input space, which is produced by defining a number
f triangular fuzzy sets in the domain of each input variable [18].
he centers of these fuzzy sets form a multidimensional grid on the
nput space. A rigorous selection algorithm chooses the most appro-
riate vertices on the grid, which are then used as the hidden node

enters in the resulting RBF network model. The idea behind the
election algorithm is to place the centers in the multidimensional
nput space, so that the distance between any two center locations
s guaranteed to be greater than a lower limit, which is defined by
he length of the edges on the grid. At the same time, the algorithm

predictions using the cross-validation procedure.
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Table 5
Minimum, maximum, mean and standard deviation values of the RMSE and R2

statistics obtained after performing 100 runs of the RBF network methodology

Minimum Maximum Mean S.D.

Linear model
RMSE 0.1028 0.1469 0.1237 0.0089
R2 0.9712 0.9829 0.9775 0.0023

RBF network models
No of fuzzy sets = 6

RMSE 0.0801 0.3094 0.1510 0.0490
R2 0.8602 0.99078 0.9572 0.02912

No of fuzzy sets = 7
RMSE 0.0456 0.1183 0.0763 0.0166
R2 0.9704 0.9969 0.9895 0.0052

No of fuzzy sets = 8
RMSE 0.0262 0.0681 0.0400 0.0081
R2 0.9777 0.9989 0.9667 0.0024
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ssures that for any input example in the training set there is at
east one selected hidden node that is close enough, according to
n appropriately defined distance criterion. The so-called “fuzzy-
eans” training method does not need the number of centers to be

xed before the execution of the method. Due to the fact that it is a
ne-pass algorithm, it is extremely fast, even in the case of a large
atabase of input–output training data. One additional advantage

s that the training algorithm used needs only one tuning parame-
er, namely the number of fuzzy sets that are utilized to partition
ach input dimension.

The training procedure was used several times by altering at
ach run the fuzzy partition of the input space (number of fuzzy
ets defined in each input dimension), which is in fact the only
esign parameter that must be defined by the user when utilizing
he fuzzy-means algorithm. Table 4 compares the statistical indices
orresponding to the RBF networks with those obtained using the
inear model. Fig. 6 depicts the CFD cell voltage values vs. the ones
roduced by the different RBF neural network models using the
OO cross-validation procedure. The average time needed to train
n RBF network using an Intel Core 2.2 GHz processor was 15 s.

The RBF neural network modeling technique was further vali-
ated by developing neural network models using exactly the same
00 random partitions of the data into training and validation sets
75% and 25% of the data, respectively) that were used to test the
inear approach. For each random partition, four neural network

odels were developed by altering the fuzzy partition of the input
pace. The results were gradually improved up to the point where
ine fuzzy sets were used to partition the domain of each input vari-
ble. A further increase results to the overtraining phenomenon,
here the performance of the produced model is not improved,

lthough the model increases in size. The RMSE and R2 statistics

ere calculated for each model using only the validation examples.

able 5 shows the minimum, maximum, mean, and standard devia-
ion values of the RMSE and R2 statistics obtained after performing
he 100 runs and compares the results with those corresponding to
he linear model.

t
i
n
v

Fig. 7. CFD cell voltage values and neural network m
No of fuzzy sets = 9
RMSE 0.0144 0.0418 0.0232 0.0049
R2 0.9963 0.9997 0.9989 0.0005

omparison with the results obtained from the linear modeling methodology.

Figs. 7 and 8 present the predicted values for Vc obtained from
he developed RBF networks in comparison to the values obtained
rom the CFD simulation code. Each subfigure corresponds to differ-
nt fuzzy partitions of the input space. From both visual inspection
f Figs. 6–8 and the results presented in Tables 4 and 5 it becomes
pparent that utilization of the RBF modeling approach indeed
mproved the accuracy of the produced model compared to the
inear approach, mainly when cell voltage takes values which are
lose to the limits.
Concluding, various models have been developed in order
o investigate the relationship between cell voltage and three
ndependent input variables and the most reliable is based on
eural-network techniques. Fig. 9 illustrates in 3D view the cell
oltage as a function of fuel and oxidant inlet volumetric rates for

odel predictions for the validation dataset.
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Fig. 8. CFD cell voltage values vs. neural netw

iscrete values of fuel gas utilization that vary between 5% and 80%
n increments of 5%. The bottom surface corresponds to the highest
alue of Uf. The results in Fig. 9 correspond to the neural network
odel that was generated by considering nine fuzzy sets in each

nput dimension.

. Optimization of the PAFC performance
.1. The concept

Research in fuel cell systems has indicated that performance can
e optimized by selecting appropriate fuel flow and oxidant flow set

ig. 9. Cell voltage predicted values as a function of fuel and oxidant gas inlet vol-
metric rates and fuel gas utilization.
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f
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odel predictions for the validation dataset.

oints [19]. These are not fixed, but do depend on the power that is
roduced by the system. In this section, we illustrate that the meta-
odels presented in the previous section can be utilized to compute

hose optimal set points. In particular, the models will be used to
ptimize the performance of the system that is presented in Fig. 10
or different power demands. Power is supplied by a DC/AC inverter
hich follows the fuel cell. The optimization problem is formulated

o that it takes into account the various constraints and limitations
f the system. In Section 4.2 the formulation of the optimization
roblem is presented in details.

.2. Formulation of the optimization problem

This subsection describes the optimization framework which is
ormulated in order to obtain the optimal set points for the inlet

uel and oxidant volumetric flow rates, given a particular value of
he power demand PD. A hierarchical two-objective optimization
roblem is defined, where the two performance criteria are given
ifferent priorities and thus, they are optimized in a sequence and

Fig. 10. Fuel cell system setup.
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ot in parallel. The constraints that should be satisfied by the solu-
ion of the problem are presented first, followed by the presentation
f the two optimization problems.

.2.1. Constraints
The following set of constraints are included in the formulation

f both optimization problems:

(i) The cell voltage is expressed as a function of Qf, Qox, Uf. Either
of the two meta-models that were derived in Section 3 (model
based on linear regression or RBF neural network model) can
be utilized:

Vc = f (Qf, Qox, Uf) (22)

ii) Fuel gas utilization is a function of current density and fuel inlet
volumetric rate. We use Eq. (10), where the value that corre-
sponds to our particular fuel cell application is assigned to the
parameter ˇf:

Uf = 2.07345
I

Qf
(23)

ii) Oxidant utilization is a function of current density and oxidant
inlet volumetric rate. We use Eq. (12), where the value that cor-
responds to our particular fuel cell application is assigned to
the parameter ˇox:

Uox = 4.40123
I

Qox
(24)

iv) Fuel cell output power PC is defined as the product of fuel cell
operating voltage, current density, and electrode effective area,
which for the geometry of our particular application is 0.04 m2.

PC = 0.04VCI (25)

v) Finally, inverter output power – which is equal to the power
demand PD – is a function of the fuel cell output power. As dis-
cussed in Ref. [20], it is sufficient to assume a fixed inverter
efficiency (90%):

PD = 0.9PC (26)

A number of additional constraints are used in the optimiza-
ion problem to express physical limitations of the system and/or
ound the system variables between desired upper and lower lim-
ts. In particular, the following upper and lower limits are posed on
he cell voltage, and the fuel- and oxidant-gas inlet volumetric rates
nd utilizations: cell voltage (0.5–0.8 V), fuel volumetric flow rate
40–120 l h−1), oxidant volumetric flow rate (85–800 l h−1), fuel uti-
ization (5–80%), and oxidant utilization (10–70%).

l
v
a
p
p

Fig. 11. Formulation of the multi-objective
ources 185 (2008) 345–355 353

.2.2. Objective functions
Selection of the objective function is a critical issue in the for-

ulation of the optimization problem. The two key variables that
hould be present in the objective function to be minimized are
he volumetric rates of the oxidant and fuel gases. As mentioned
reviously, we construct the optimization problem using a multi-
bjective hierarchical approach. In the first step we minimize the
uel volumetric rate Qf, recognizing the fact that our first concern
s to minimize consumption of the expensive fuel. In the second
tep we optimize with respect to the oxidant volumetric rate Qox.
his is considered as a second-priority but still important objective,
ecause by lowering Qox we actually reduce the parasitic compres-
or power, which in turn increases the net power of the fuel cell
ystem. The result of the first step is added as a constraint in the
econd step, but we allow a slight increase in the optimal value of
f as it is explained next.

First stage:
The first optimization problem is formulated as follows:

min
Qf,Qox,Uf,Uox,I,VC

Qf (27)

subject to the constraints (22)–(26) and the upper and lower
bounds posed on the variables of the problem.
Second stage:

If we denote the optimal result of the first stage by Q 1
f , the

second optimization problem is defined as follows:

min
Qf,Qox,Uf,Uox,I,VC

Qox (28)

subject to the constraints (22)–(26), the upper and lower bounds
posed on the variables of the problem and the following addi-
tional constraint:

Qf ≤ Q 1
f (1 + �%) (29)

which ensures that the optimal result of the first stage regarding
the fuel volumetric rate is not deteriorated by more than �%. A
typical value for the parameter �% which is also used in the results
that are presented next is 5%.

.2.3. Type of optimization problem
The neural network model derived in Section 3.2 is obviously

on-linear. However, even in the case when the model derived by

inear regression is used to correlate Vc with the independent input
ariables Qf, Qox, Uf, the relationship is non-linear (the natural log-
rithms of the input variables are used). Thus, the mathematical
rogramming problems that are formulated in both stages of the
roposed methodology are non-linear.

Non-Linear Programming Problem.
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ig. 12. (a) Optimal values of fuel and oxidant inlet volumetric rates as a function
ptimal values of power demand as a function of current density and (d) optimal va

The non-linear programming (NLP) problems are solved using
AMS [21], which is a powerful commercial modeling language. The
olution of the second stage provides the final optimal values of the
uel and oxidant volumetric rates Q ∗

f , Q ∗
ox (which are the manipu-

ated variables in a real application), but also the optimal values
f the cell voltage V∗

C, the current density I* and the hydrogen and
xygen utilizations U∗

f , U∗
ox. The optimal values of power density,

D*, and the PAFC efficiency, n∗
eff, can be easily obtained next (for

xample Eq. (13) can be used for the calculation of optimal effi-
iency). The complete optimization problem that is formulated is
ummarized in Fig. 11.

.3. Solution of the optimization problem—results

In this subsection, we present the results obtained from the solu-
ion of the proposed multi-objective NLP optimization framework
hat is proposed in this work. The results have been obtained using
he neural network model that was developed, by considering 9
uzzy sets in each input dimension which was the most reliable
nd accurate among all the meta-models that have been presented
n Section 3. We ran the optimization tool for different values of
ower demand covering the range (5–90 W) and for each value we
btained the optimal values of fuel and oxidant inlet volumetric
ates, cell voltage, current density, cell power density, and effi-
iency. The results are presented graphically in Fig. 12. The average
ime required to solve the multi-objective optimization problem in
n Intel Core 2.2 GHz processor was 2.8 min when utilizing the neu-
al network model. This is much higher compared to the average
ime needed to solve the problem when incorporating the model
ased on linear regression, which was 9 s.

In Fig. 12, we can notice a jump in the optimal oxidant volumet-
ic flow rate Q ∗

ox and a change in the slope of the optimal efficiency

urve when power demand PD becomes equal to 38 W. This hap-
ens because at this particular value of PD, the optimal value of
uel utilization U∗

f hits for the first time its upper limit (80%). The
ower demand can then be met only by increasing substantially
he oxidant fuel rate Q ∗

ox (this is obtained as the result of the second

f
t

e
d

er demand, (b) optimal values of cell voltage as a function of current density, (c)
f FC efficiency as a function of power demand.

ptimization stage). The change in the slope of the efficiency curve
s explained by observing that up to the specific value of power
emand of 38 W, optimal fuel utilization U∗

f , which affects effi-
iency according to Eq. (13), is constantly increasing. For greater
alues of power demand, U∗

f remains fixed at its upper limit and
hus efficiency changes only due to changes in cell voltage values.

. Conclusions

In this work a PAFC optimization study has been performed,
ased on meta-models that were derived by applying two regres-
ion methods on the results produced by a CFD model:

Linear regression methodology.
The RBF neural network methodology.

The linear regression methodology leads to a model where the
atural logarithms of the input variables are linearly combined to
redict the cell voltage. The produced model is not accurate enough
or output values which are close to the upper or lower limits. How-
ver, the reliability of the linear regression methodology is quite
atisfactory for the rest of the output range. Several statistical tests
llustrated the superiority of the neural network model in terms of
ccuracy, especially in the cases where the output variables take
alues close to their upper or lower limits.

The optimization study is based on the formulation of a
ulti-objective Non-Linear Programming Problem, that takes into

ccount several constraints and physical limitations of the system.
he solution of the optimization problem provides the optimal val-
es of the process variables, given the power demand. A main result
f this study is the nomograms that depict the optimal values of the
anipulated variables (fuel and oxidant inlet volumetric rates) as
unctions of power demand. These optimal values can be used as
argets in real time flow control loops.

The proposed computational tool is system specific, i.e. differ-
nt nomograms will be constructed by applying the method for
ifferent types of fuel cells and/or different cell geometries.
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herefore, the results are subject to further development and
xploitation. The proposed computational tool could additionally
e further validated by applying it in a real PAFC system comprised
f the components shown in Fig. 10.

An extension of the approach described in this paper, which
s under development, will add dynamic characteristics to the
roduced models. The dynamic models will serve as dynamic sim-
lators, but they will also be utilized as predictors of the future
emporal behavior of the process in a model predictive control
ramework.

In conclusion, the proposed methodology may prove to be a
ery useful tool for researchers and practitioners who are inter-
sted in fuel cell systems and their applications, as it integrates and
ombines different modeling and optimization approaches, start-
ng from a detailed and analytical model of the system and reaching
nally to the process of optimal decision making regarding the
peration of the system.
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